Bianca Baier^{1,2}, Colm Sweeney², Molly Crotwell^{1,2}, Kenneth Davis⁴, Sha Feng⁴, Josh DiGangi⁵, Jack Higgs², Patricia Lang², Thomas Lauvaux⁴, Scott Lehman³, Ben Miller^{1,2}, John Miller², Eric Moglia^{1,2}, Tim Newberger^{1,2}, Sandip Pal⁴, Sonja Wolter^{1,2}, and *ACT-America science team* ¹ CIRES, University of Colorado, Boulder, CO, ² NOAA ESRL GMD, Boulder, CO, ³ Institute for Arctic and Alpine Research, Boulder, CO, ⁴ The Pennsylvania State University, University Park, PA, ⁵ NASA Langley Research Center, Hampton, VA 23 May 2018 ACT-America Supplement # Regional inversion modeling - Need to improve inversion model estimates of carbon (C) fluxes at regional scales to better predict future climate - Our ability to accurately quantify fluxes on smaller scales is limited by model uncertainties - Uncertainties in regional inversions: - -regional transport, - -background estimation, - -assigning prior flux - uncertainties in time/space, - -sparse observations ACT-America Results Summary and Future Work Supplement 0● 00000 0 0000000000 #### ACT-America campaign # Atmospheric Carbon and Transport - America Schematic: act-america.larc.nasa.gov Fair-weather (sources) Frontal-crossing (transport) OCO-2 underpass (retrieval evaluation) #### Fair weather flask analyses - What do species measured in NOAA/GMD flasks tell us about regional CO₂ and CH₄ sources? - Can flask samples approximate background carbon levels? - Focus on fair weather flights for winter 2017 #### Vertical greenhouse gas distributions: WT 2017 - Column GHGs and CO increase moving NE throughout ACT domain: shift in air mass origin from lower latitudes (lower C) to higher latitudes (higher C) - Important to quantify background contribution to regional sources - Boundary layer enhancements $(\Delta[X] = [X]_{obs} [X]_{bg})$ inform about local sources/sinks in each region ## Estimating background C levels using flasks - Incorrect background determination can result in biased C fluxes within inversion domain - Upper-atmospheric flask CO_2 vs. modeled background shows overlap (1σ) , but some disagreement due to incorrect tracer transport In total, approximately 50 species measured in flasks: ■ Northeast/Midwest: source signatures from fossil fuel/ONG - Northeast/Midwest: source signatures from fossil fuel/ONG - Midwest: large agricultural influence - Northeast/Midwest: source signatures from fossil fuel/ONG - Midwest: large agricultural influence - **Southeast**: weaker correlations with anthropogenic species, suggesting biogenic influence - Northeast/Midwest: source signatures from fossil fuel/ONG - Midwest: large agricultural influence - **Southeast**: weaker correlations with anthropogenic species, suggesting biogenic influence #### Radiocarbon: Northeastern U.S. We know ¹⁴CO₂ is a tracer for recently-added fossil fuel CO₂ emissions: $$\mathsf{CO}_{2obs} = \mathsf{CO}_{2bg} + \mathsf{CO}_{2ff} + \mathsf{CO}_{2bio}$$ - Radiocarbon sampling during ACT concentrated in Northeast - Biogenic CO₂ dominating CO_{2tot} signal, while fossil fuel CO₂ constant ## Summary and future work - For ACT WT'17, use *GMD*measurements in flasks for regional-scale source attribution, determining background levels → apply to CCGG network - Regional transport: - -Because sources well-known, use ¹⁴CO₂ to evaluate tracer transport in inversions Utilize knowledge gained through campaign collaborations: -Apply understanding of transport via weather for more informed assimilation of network data in inversions (i.e. NOAA CarbonTracker) Supplement